
 

  
Abstract— A novel client puzzle protocol, the 

Memoryless Puzzle Protocol (MPP), is proposed and 
investigated.  The goal is to show that MPP is a viable 
solution for mitigating distributed denial-of-service (DDoS) 
attacks in an anonymous routing environment.   One such 
environment, Tor, provides anonymity for interactive 
Internet services.  However, Tor relies on the Transport 
Layer Security (TLS) protocol, making it vulnerable to 
distributed denial-of-service (DDoS) attacks.  Although 
client puzzles are often proposed as a solution to denial-of-
service attacks, this research is the first to explore TLS 
DDoS attack mitigation in the Tor anonymous routing 
environment. 

Using the MPP, the central processing unit (CPU) 
utilization and user-data latency measures are analyzed 
under four increasing DDoS attack intensities and four 
different puzzle probability distribution levels.  For results, 
typical CPU utilization rates of 80-100% drop to below 
70% signifying successful mitigation.  Furthermore, even if 
a client only has a 30% chance of receiving a puzzle or the 
maximum puzzle strength is used, MPP effectively 
mitigates attacks.  Finally, user-data latency decreases 
approximately 50% under large-scale attacks.  Hence, the 
MPP is a suitable solution for increasing the robustness 
and reliability of Tor. 
 

I. INTRODUCTION 
very common form of distributed denial of service 
(DDoS) attack in today’s networks consist of a multitude 

of malicious clients flooding the network in the direction of a 
particular server to prevent legitimate clients from receiving 
such server service.  Anonymous communications systems 
(ACS) that rely on an overlay network of servers to provide 
anonymity service are vulnerable to such DDoS attacks. 

Tor [1] is one such ACS.  Tor provides anonymous 
interactive Internet services like web, internet relay chat (IRC), 
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and secure shell (SSH).  Unfortunately, malicious zombies or 
bots [2] are more quickly controlling and managing IRC 
networks, or botnets, to launch DDoS attacks [3].  In 2003, for 
example, one honeypot research project saw 15,164 unique 
zombies form a large botnet within days [4].  In 2004, the 
Witty worm created 12,000 zombies within 45 minutes [5].  
Botnets may send attack commands via IRC or peer-to-peer 
(P2P) channels [6]. The DDoS attacks use Transport 
Communications Protocol (TCP) SYN packet and User 
Datagram Protocol (UDP) flooding or more sophisticated 
techniques to degrade or eliminate legitimate user service.  The 
common defenses of anomaly detection, rate-limiting and 
filtering may be ineffective under a full botnet attack [6].   A 
typical defense depends on a high level of end user internet 
security and privacy awareness.  In addition, recent research 
into the Secure Overlay Services (SOS) [7] architecture, 
similar to Tor’s onion routing architecture, has demonstrated 
the ability to proactively defend against a web denial of service 
attack.   

In this paper, the goal is to show that MPP is a viable 
solution for mitigating DDoS attacks on Tor’s interactive 
Internet services such as an anonymous web server.  Client 
puzzles are investigated to protect against the inherent TLS 
protocol vulnerability and mitigate DDoS attacks.  For Tor, 
puzzles are used to keep onion routers (OR) from completing 
the large number of decryption operations forced upon them 
during an attack.  Of concern is the impact the client puzzle 
defensive technique has on OR CPU utilization and user-data 
latency.   Since the OR pushes CPU load back onto clients 
during a DDoS attack, OR CPU utilization and latency are 
important parameters to assess puzzle effectiveness in 
maintaining service availability and preserving anonymity for 
legitimate clients. 

In Section II, the implementation of MPP is delineated.  In 
Section III, the analysis of OR CPU utilization and user-data 
latency using MPP under increasing attack intensities and 
differing probability distribution levels are examined.  In 
Section IV, a succinct summary and conclusion are given. 
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II. PUZZLE IMPLEMENTATION 
 

Client puzzles have been used as a cryptographic 
countermeasure to mitigate denial of service attacks [8].   In 
addition, client puzzles have been used to defend web servers 
running the Secure Sockets Layer (SSL) protocol [9].  Many 
others also used client puzzles [10, 11, 12, 13, 14, and 15].  In 
such schemes, the client solves a given puzzle before 
establishing a SSL/TLS session with a server.  The client is 
forced to expend computational resources prior to requesting 
the server to carry out expensive operations to mitigate DDoS 
attacks.   A description of the MMP implementation follows. 

 

A. Description 
 

The proposed MPP for Tor's OR is shown in Figure 1.  The 
MPP calls for an OR to construct a 512 bit string by 
concatenating (|) a timestamp (TS), a MD5 hash of its public 
key (K), and a random nonce (x).  The string is hashed using 
SHA-1 to form a 160 bit string S.  To complete the puzzle, the 
k lower ordered bits of x are set to zero to form x' and a keyed-
hash message authentication code (HMAC) [16] of S is 
computed. HMAC is a secure hash function, like MD5 or 
SHA-1, wherein the user supplies a message, in this case S, 
and a secret key.  If an OR is under attack and thus distributing 
puzzles, it probabilistically sends TS, x', k, S, and HMAC(S) 
when a TLS connection request is received from either a 
malicious zombie or legitimate onion proxy (OP).  Alleviating 
the workload of the OR and, to a lesser extend, legitimate 
clients is achieved by lowering the probability p of generating, 
sending and receiving a puzzle.   

When an OP receives a puzzle, it verifies the TS is current 
before concatenating TS, a hash of the OR's public key, and x'.  
The OP solves the puzzle via a brute force approach by 
generating permutations for the k bits, hashing individual 
solutions, and comparing their hash values to S.  Once the OP 
discovers x, it returns to the OR TS, x, and HMAC(S). 

To verify the OP has submitted a correct solution, the OR 
confirms TS is current and then hashes (TS|K|x) = S' where x is 
supplied by an OP.  The OR confirms it constructed the puzzle 
by verifying HMAC(S') = HMAC(S).  If a match is confirmed, 
the OR completes the TLS handshake. 

MPP requires an OR execute two hash functions each time it 
supplies a puzzle and two hash functions when it verifies a 
solution.  No state information is maintained even after a client 
has correctly solved a puzzle.  A client can re-use a puzzle but 
only during its time window.  Puzzle solutions cannot be pre-
computed as the timestamp and a different x are part of the 
puzzle.  Finally, by not sending the hash of an OR's public key, 
each OP retrieves this information locally and cannot be forced 
to solve another OR's puzzle. 

A DDoS attack targeting Tor ORs using the TLS protocol is 
unavoidable, but it is possible to limit its effect.  Additionally, 

  
Figure 1: Proposed MPP 

To mitigate a DDoS attack, the OR creates a specific strength puzzle based on 
threat/attack level and probabilistically sends the client a stateless Puzzle, the 
client replies with a brute force solution, and OR confirms before completing 
the TLS handshake and committing resources. 
 
it is assumed an attacker likely possesses a collection of 
unwitting computer systems, like a botnet, to conduct their 
nefarious activity.  These systems will have a wide range of 
computational capabilities and are not likely to be high-end 
processors specifically used to target Tor ORs.  For this reason 
memory-based proof-of-work mitigation techniques [17] are 
not used. Also, Tor establishes multiple TLS connections at 
startup and refreshes these over time in the background.  As a 
result, a user is assumed not to experience the TLS handshake 
delay given the 100 or fewer zombies in this study.   However, 
if a reasonable-sized botnet of 10,000 zombies attacks, this 
assumption is unlikely to hold.  Furthermore, legitimate clients 
are penalized if the malicious zombies are collectively more 
powerful.  The implementation details are discussed next. 
 

B. Implementation Details 
 

Tor uses the OpenSSL library [18] for the TLS handshake.  
The 0.9.8 version of this C library is modified to incorporate 
client puzzles.  A puzzle library is created and tested which 
contains the data structures for a puzzle, a puzzle solution and 
three functions: create, solve, and verify.  These functions 
implement the MPP with only a few exceptions. First, 
timestamp verification is not implemented.  Second, the client 
does not retrieve the public key of the server before solving a 
puzzle.  Instead a hard-coded fake key is hashed by the client.  
The resulting hash is available only to create and verify 
functions. Finally, the solve function solves a puzzle by 
iterating through all the possible solutions.  For example, if 
k=4, the order solutions attempted are 0x0, 0x1, 0x2, ..., 0xf.  
Other methods are possible like starting at 0xf and  

 

OR 

OP 

Client Hello 

Server Hello 

Certificate 

Puzzle (TS, x’, k, S, HMAC(S)) 

Puzzle Solution (TS, x, HMAC(S)) 

Server Done 

 
OR generates x and TS, 
periodically decides k, 
calculates S and 
HMAC(S) and sends 
stateless puzzle with 
probability p. 
 

 
OP confirms TS and 
calculates S’ using x.     
If HMAC(S’) = HMAC(S) 
then the OR commits 
resources. 

OP verifies TS and solves 
for x by brute force from 
SHA-1(TS|MD5(K)|x) = S. 
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Figure 2: Modified TLS Handshake Sequence. 
Server sets new SSL puz field to non-zero value and computes Tor-based 
puzzle strength and probabilistically distributes “Puzzle” message to clients.  
Client replies with “Puzzle Solution” message. 

 
decrementing or randomly selecting a solution.  In the latter 
case, failed solutions must be saved or solutions must be 
allowed to repeat. This is important because malicious 
individuals with access to the code could modify the create 
function so that all clients are forced to iterate through all 
possible solutions.  

OpenSSL's TLS handshake implementation is modified with 
two new messages, the Puzzle and Puzzle Solution messages.  
The message sequence is shown in Figure 2. 

Puzzle messages are only sent when a puzzle needs to be 
solved, i.e., when k>0.  This is accomplished by adding a 
variable inside the SSL data structure. This integer variable, 
called puz, is set to zero when the SSL structure is initialized.  
A server application using the modified OpenSSL library 
sends a puzzle by setting puz to a non-zero value.  How this 
value is calculated is left to the application. 

Tor version 0.1.1.7-alpha is modified so ORs can assign 
puzzle strength and distribute puzzles during a TLS 
connection.  Puzzle strength is determined by taking into 
account the overall OR CPU utilization.  This is done in 
consideration of other services running on the OR.   

These other services, along with the Tor service, might 
increase CPU utilization to the point where even a small attack 
could result in significant delays.  The algorithm in iostat [19] 
is used to determine CPU utilization.  To avoid incorrectly 
reacting to single spikes in CPU utilization, an average CPU 
utilization is used.  More specifically, Tor's run function is 
executed every second.  In this function, CPU utilization is 
polled and recorded in a circular array with five elements.  
When a connection request arrives, the average OR CPU 
utilization of the array is used to calculate the puzzle strength.  
The puzzle strength is the product of the average utilization 
percent and the maximum puzzle strength.  This value can be 
easily changed by anyone with access to the code.  The benefit 
of using an average is that an adversary is likely to find it 
difficult to hold a server's puzzle strength constant. 

To further control puzzle distribution, a probabilistic 

decision variable is used.  The variable is assigned a value each 
time a connection request occurs and is compared to a pre-
configured threshold which determines if a puzzle should be 
sent.  This feature is used to explore whether attacks can be 
mitigated without distributing a puzzle for every connection.  
Finally, Tor can easily be modified so that both client puzzles 
and the probabilistic decision feature can be turned off and on.   
The network topology setup is specified next. 
 

C. Setup 
 

The network topology as shown in Figure 3 consists of one 
OR, one client/server, and eight attack machines. The OR and 
client/server are 800 MHz machines with 256 MB RAM. The 
eight attackers are composed of five 1.7 GHz machines with 
256 MB RAM while the remaining machines have 1.5 GHz, 
2.4 GHz, and 2.0 GHz processors with 256 MB, 512MB, and 
1GB RAM respectively. The number of attackers and their 
capability differences are limited by machine availability. 

The attack program is developed using Tor's own functions. 
The user supplies the IP address of the victim, the number of 
children to be spawned, and a random number seed.  Upon 
execution, the program spawns the correct number of children 
and uniquely seeds a random number generator for each 
process.  Next, each process sleeps a random amount of time 
between zero and five seconds before establishing a TLS 
connection.  Once established, the connection is terminated 
and the process again sleeps before again initiating a TLS 
connection. 

By varying the number of processes in the attack program, 
the level (intensity) of the attack is varied.  Moreover, the 
attack network accurately emulates a botnet: a master attack 
machine, when instructed to launch (conclude) an attack 
against the OR, signals the remaining seven machines to start 
(stop) attacking as well.  

 

Figure 3: Network Topology. 
One OR victim, five identical and three dissimilar attack clients emulating a 
botnet, and one client server connected via a 100Mbps Ethernet Hub. 
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All machines used during experiments are installed with 
Fedora Core 2.  To measure average CPU utilization, the OR  
victim runs vmstat and sends the output to a file.  To measure 
latency, a TCP client and server sends latency probes through 
the OR.  When the client sends a packet, it inserts a timestamp.  
When the packet is received by the server, it records the client 
timestamp and the time the packet arrived at the server to a 
file. These timestamps are used to calculate the latency of the 
packet in microseconds.  The analysis is explained next. 
 

III. ANALYSIS 
 

This section presents the performance analysis of the MPP.  
The analysis determines the effectiveness of the protocol using 
a puzzle distribution density function designed to defeat hash 
function DDoS attacks and limit the number of puzzle 
messages traversing the Tor network.  Section A reveals the 
average CPU utilization performance results.  Section B shows 
the user-data latency performance results.  
 

A. CPU Utilization 
 

To determine average CPU utilization, vmstat on the victim 
sends utilization statistics to a file every five seconds.  Tor is 
configured to send a puzzle with probability p.  Five 
experiments for each attack level (18, 38, 58, and 100 
processes) are executed for seven minutes with one minute of 
idle time between each trial.  By attacking for seven minutes 
and collecting utilization measurements every five seconds, 
sufficient data can be sampled while at the same time 
minimizing the amount of I/O required to record the data. 

The victim has six configurations.  The first configuration is 
an unmodified installation of Tor and OpenSSL.  The 
remaining configurations use the modified Tor and OpenSSL 
but differ in the probability they will send a puzzle (0.0, 0.3, 
0.5, 0.7, and 1.0).  

First, the CPU utilizations from each of the four attack 
levels are measured to determine if an attack is actually taking 
place.  The victim is a single OR; thus, the results are a best-
case measurement.  An attack is successful if CPU utilization 
exceeds 70%.  This number is chosen because administrators 
often have “reserve” utilization available for unexpected 
events.  

The average CPU utilization for an OR under attack from 
eight attack machines using the various process levels is shown 
in Figure 4.  Puzzles are not distributed to mitigate the DDoS 
attack.   

The solid line is the modified OpenSSL library and Tor 
application installation.  The dashed line is the unmodified 
OpenSSL library and Tor application default installation.   

 
Figure 4: Attack Effects on Average CPU Utilization. 

58 and 100 bots attacks successful (>70%). 
Modified installation incurs overhead (≤10%). 

 
As the Figure 4 shows and t-tests confirm, the CPU utilization 
is statistically greater at each level of attack intensity, with the 
exception of the 100 process attack.   

For both installations, only the 58 and 100 process/bots 
attacks are considered successful since an average of at least 
80% to 100% CPU utilization is achieved, respectively.  The 
difference between the solid and dashed lines identifies the 
overhead induced when using modified Tor.  The puzzle 
overhead increase never turns any of the non-attacks (18 and 
38) into attacks, i.e., does not exceed 70%.  Thus, the average 
CPU utilization due to overhead is approximately 7% and 
never exceeds 10%.   

 The average CPU utilization for each attack level when 
puzzles are distributed according to the various probabilities is 
shown below in Figure 5.   

 
Figure 5: Average CPU Utilization. 

58 and 100 bots DDoS attacks mitigated (<70%) for all probability levels. 
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Of foremost importance is that the 58 and 100 process/bots 
attacks are mitigated. In fact, they are mitigated so well, they 
can no longer be classified as attacks as all are below 70%.  
Furthermore, mitigation appears to improve as the puzzle 
distribution probability increases because the number of clients 
solving puzzles at any given time also increases.  If clients are 
solving puzzles that means the server is not decrypting pre-
master secrets. The only exception is when an 18 process 
attack is used.  Such a result is likely due to weak puzzles 
created because of the weak attack.   

Interestingly, a probability level of 0.3 is almost as effective 
at mitigating attacks as the other probability levels.  This trend 
is likely due to the use of 30 as maximum puzzle strength.  
During the attack, a client will either receive a puzzle or not.  
If the client does not receive a puzzle, the request increases the 
CPU utilization.  If the client does receive a puzzle, it is likely 
a strong one, i.e., greater than 25, because most clients have 
not received puzzles.  Eventually, all attacking clients receive 
puzzles.  Because the strengths are so strong the attack is 
effectively mitigated.  For all attack and probability levels, an 
average utilization below 70% is achieved. 

The final point of interest is the knee-shaped curve in 
relative mitigation performance between 58 and 100 process 
attacks.  The 100 process attack appears to perform better than 
the 58 process attack.  The reason is that too many attack 
processes execute on a single machine; thus, puzzles are solved 
at a slower rate.  This causes an effect similar to solving a 
stronger puzzle.  This experimental constraint was due to 
limited availability of attack computers.  

CPU utilization given different puzzle strengths is shown in 
Figure 6.  The most significant differences occur at the 100 
process attack level.  No puzzles achieve 100%, puzzle 
strength of 20 achieves 87% and puzzle strength of 30 
achieves less than 60% CPU utilization, respectively.   

A similar but more tightly bounded trend holds for the 58 
attack process level.  Hence, only increasing puzzle strength to 

 
Figure 6: Puzzle Strength. 

Maximum strength puzzle (MPS=30) mitigates attack (utilization <60%). 

the maximum of 30 MPS mitigates a DDoS attack at the 58 
and 100 process levels.  The user data latency results are 
discussed next. 
 

B. User Data Latency 
 

To measure user-data latency, the victim is configured five 
ways.  The first does not use client puzzles to protect against 
DDoS attacks.  The other four use client puzzles at different 
probability levels of 0.3, 0.5, 0.7 and 1.0.  Experiments are run 
for 13 minutes.  Probes are sent at a rate of 10 per second.  For 
the first three minutes the OR is not under attack. This allows a 
baseline to be established.  After three minutes, an attack is 
initiated where 18, 38, 58, or 100 processes are distributed 
across the eight attack machines.  Each attack lasts for seven 
minutes.  The experiment ends after three additional minutes 
of sending probes.  

User-data latency with increasing attack intensity is shown 
in Figure 7. 

 
Figure 7: Attack Effects on Average Latency. 

Larger attacks incur higher latency up to 80,000 microseconds. 
 
As expected, the higher the attack intensity the slower the 

average user-data latency.  The average latency of the highest 
level attack, 100 processes, is 80,000 microseconds.  
Achieving low-latency user-data delivery is a fundamental 
objective of Tor.  When not under attack, user-data is delivered 
from the client to the server in approximately 1400 
microseconds, i.e., almost instantaneously.  Of course, data 
does not traverse multiple ORs.  Plus, the propagation delay 
and network congestion are negligible.  If client puzzles are 
used to mitigate an attack, the increase in latency is reduced.   
The average latency for each attack level at the different 
probability levels is shown in Figure 8.  The 18, 38 and 58 
process/bots attack latency measurements are not statistically 
different across probability levels.  The 100 process/bots attack 
latency is statistically different across probability levels but the 
latency is minuscule and thus inconsequential. 
  However, the 100 process/bots attack latency is at least 
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Figure 8: Average Latency. 

Reduced latency for larger scale attacks for all probability levels. 
(>50% for 100 process and <50% for 58 process). 

 
54% lower for probability 1.0 than in the Fig. 7 (37,000 versus 
80,000 microseconds).  The 58 process/bots attack latency is 
also lower (~30,000 versus 40,000 microseconds).  An analysis 
of variance (ANOVA) reveals that neither the probability nor 
the interaction between attack level and probability contribute 
significantly to latency variation at the 95-percentile level.  
This neither strengthens nor weakens the assertion that 
distributing puzzles with a probability of 0.3 effectively 
mitigates the hash function attack and decreases the number of 
puzzle messages traversing the Tor network.  So the 
differences in CPU utilization caused by probability changes 
are not enough to affect latency. 

Hence, distributing puzzles 30% of the time is a feasible 
solution to both the decryption and hash function DDoS 
attacks.  Although such a decision is not likely to significantly 
affect latency, it does make the integration of the MPP more 
appealing for Tor administrators.  The conclusion is given 
next. 

 

IV.   SUMMARY AND CONCLUSION 
 
In this paper, the novel client puzzle protocol MPP is 

proposed to mitigate TLS DDoS attacks in the Tor routing 
environment.  Without MPP and under 58 and 100 botnet 
DDoS attacks, legitimate client anonymous service is 
adversely affected as indicated by an 80 to 100% CPU 
utilization rate on the onion router.  However, with MPP and 
under similar DDoS attacks, legitimate client anonymous 
service improves as indicated by a less than 70% CPU 
utilization rate on the onion router for all four probability 
distribution levels.  Additionally, with MPP and no attacks, 
only a 10% or less CPU utilization overhead is incurred on the 
onion router.  Also, user-data latency decreases approximately 
50% under the large-scale attacks.  Hence, using MPP 

successfully mitigates malicious TLS DDoS attacks. 
Moreover, even if a client only has a 30% chance of 

receiving a puzzle or the maximum puzzle strength is used, 
MPP effectively mitigates attacks.  Also, the MPP puzzle 
probability distribution and the maximum puzzle strength are 
customizable to respond to a particular threat environment.  
Hence, MPP is a viable and flexible solution for mitigating 
DDoS attacks in an anonymous routing environment. 

Extensions to this research might explore paths that mirror 
more closely the length and traffic volume across multiple Tor 
onion routers.  This would provide additional insight into the 
suitability of MPP as a solution for increasing the robustness 
and reliability of Tor in preserving anonymity for interactive 
Internet services. 
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